STAINLESS STEELS Roda Specialty Steel ## STAINLESS STEELS Stainless steels have a **resistance to corrosion** which is significantly higher than other carbon or alloy steels. Some stainless grades also exhibit excellent resistance to high temperatures. These characteristics are obtained with the addition of Chromium and other alloying elements, which make Stainless Steel suitable for use in agressive corrosive environments such as chemical plants, marine environments, offshore drilling, agriculture, food processing and also architectural applications. Stainless Steel can by supplied hot rolled or cold finished in an annealed, normalized or quenched & tempered condition. Bars and wire in a varity of shapes and sized are available. | | Condition | Profile | Range (inc) | Finish | | |-------|---------------|-----------------------------------------|--------------------------------------|-------------------------|--| | | Hot rolled | Round | 0.75÷4.00 | As rolled, rough peeled | | | Bars | Cold-drawn | Round<br>Hexagonal<br>Square<br>Special | 0.08÷1.75<br>0.16÷2.625<br>0.16÷2.00 | Bright | | | | Smooth-turned | Round | 0.75÷3.00 | Smooth and bright | | | | Ground | Round | 0.12÷3.00 | Smooth and bright | | | Coils | Cold-drawn | Round<br>Hexagonal<br>Square<br>Special | 0.04÷0.87<br>0.12÷0.50<br>0.16÷0.50 | Bright<br>Coated | | For all Imperial sizes - cold drawn & smooth turned, or cold drawn wire - tolerances: Per ASTM A484 For our RPM.Bar (imperial or decimal sizes) - cold drawn & smooth turned: J9 tolerance which is half of the tolerance listed in ASTM A484, Straightness of 1/32'' per 5ft, Out of roundness - $\frac{1}{2}$ the dia tolerance #### FERRITIC STAINLESS STEELS Ferritic Stainless Steels cannot be heat treated and quenched. However, their mechanical properties can be increased by work hardening through cold drawing. The corrosion resistance is ensured by the Chromium content and further increased by the addition of Molibdenum. To enhance machinability, Sulfur is added. These steels are **magnetic** and commonly used in automotive applications, as well as appliances and a variety of industrial applications. | | AISI-UNS | C (max) | Si (max) | Mn (max) | P (max) | S | Cr | Мо | Other elements | |--------|------------------|---------|----------|----------|---------|-----------|-----------|-----------|----------------| | 430 | 430<br>\$43000 | 0,08 | 1,00 | 1,00 | 0,040 | ≤ 0,030 | 16,0÷18,0 | | - | | 430Nb | - | 0,05 | 1,00 | 1,00 | 0,040 | ≤ 0,030 | 16,0÷18,0 | - | Nb=12xC ÷ 1,0 | | 1.4105 | 430F<br>S43020 | 0,08 | 1,50 | 1,50 | 0,040 | 0,15÷0,35 | 16,0÷18,0 | 0,20÷0,60 | | | 430F M | (430F<br>S43020) | 0,08 | 1,50 | 1,50 | 0,040 | 0,15÷0,35 | 16,0÷18,0 | 0,80÷1,10 | Ni= ≤1,0 | | 1.4106 | | 0,03 | 2,00 | 1,00 | 0,040 | 0,25÷0,35 | 17,0÷19,0 | 1,50÷2,50 | | | 434 | 434<br>S43400 | 0,08 | 1,00 | 1,00 | 0,040 | ≤ 0,030 | 16,0÷18,0 | 0,90÷1,40 | - | | 1.4114 | (XM34 S18200) | 0,08 | 1,00 | 2,50 | 0,040 | 0,15÷0,35 | 17,5÷19,5 | 1,50÷2,50 | Ni= ≤0,75 | <sup>\*</sup> There are no standard for this grade #### MARTENSITIC STAILNLESS STEELS Martensitic Stainless Steels typically have increased Chromium content as well as higher carbon levels. These steels are suitable to be **heat treated**, quenched and tempered. They can be offered in the annealed condition with good machinability, enhanced by the **addition of Sulfur**, or in the quenched and temperd condition for increased mechanical properties and corrosin resistance. High surface hardness can be achieved for these steels by induction hardening. Typical applications include instruments and high strength components for pumps and valves. | R | AISI-UNS | С | Si (max) | Mn (max) | P (max) | S | Cr | Other elements | |--------|----------------|-----------|----------|----------|---------|-----------|-----------|------------------------------------------| | 410 | 410<br>S41000 | 0,08÷0,15 | 1,00 | 1,50 | 0,040 | ≤ 0,030 | 11,5÷13,5 | Ni = ≤ 0,75 | | 416 | 416<br>S41600 | 0,06÷0,15 | 1,00 | 1,50 | 0,040 | 0,15÷0,35 | 12,0÷14,0 | Mo = ≤ 0,60 | | 420A | 420<br>S42000 | 0,16÷0,25 | 1,00 | 1,50 | 0,040 | ≤ 0,030 | 12,0÷14,0 | | | 420B | 420<br>S42000 | 0,26÷0,35 | 1,00 | 1,50 | 0,040 | ≤ 0,030 | 12,0÷14,0 | - | | 420C | 420<br>S42000 | 0,36÷0,42 | 1,00 | 1,00 | 0,040 | ≤ 0,030 | 12,5÷14,5 | - | | 420C1 | 420<br>S42000 | 0,43÷0,50 | 1,00 | 1,00 | 0,040 | ≤ 0,030 | 12,5÷14,5 | - | | 430F | 430F<br>S43020 | 0,10÷0,17 | 1,00 | 1,50 | 0,040 | 0,15÷0,35 | 15,5÷17,5 | Mo = 0,20÷0,60 | | 1.4122 | - | 0,33÷0,45 | 1,00 | 1,50 | 0,040 | ≤ 0,030 | 15,5÷17,5 | $Ni = \le 1,00$<br>$Mo = 0,80 \div 1,30$ | | 431 | 431<br>S43100 | 0,12÷0,22 | 1,00 | 1,50 | 0,040 | ≤ 0,030 | 15,0÷17,0 | Ni = 1,50÷2,50 | #### **AUSTENITIC STAINLESS STEELS** In addition to Chromium (the common element of all Stainless Steel), Austenitic Stainless Steels contain high levels of Nickel, which significantly **improves the steels resistance to corrosion**. Varrying by grade — other alloying elements include Molybdenum, Titanium, Niobium, Copper etc. — are added to achieve specific design properties & performance. Heat treatment with quenching & tempering is not possible for these steels. However — cold drawing will significantly change and increase mechanical properties, with the possibility to design the process to achieve specific design values. In the hot rolled condition — these steels are not magnetic, while in the cold drawn state they will exhibit slight residual magnetism. Austenitic Stainless Steels are used in a great variety of applications from cold heading where the addition of copper enhances formability to the manufacture of air craft fittings & automotive parts. Our Steels of the **PLUS series** are calcium treated and have added **Sulfur** which greatly enhances machinability. | R | AISI-UNS | C | Si (max) | Mn (max) | P (max) | S | N (max) | Cr | Ni | Other elements | |---------|-------------------|-----------|----------|----------|---------|-----------|-----------|-----------|-----------|-----------------------------------------------| | RODINOX | Patented grade | 0,10 | 1,00 | 5,0÷9,0 | 0,045 | 0,030 | 0,20 | 16,0÷19,0 | 3,0÷6,0 | Cu =1,00÷4,00 | | 302 | 302<br>S30200 | 0,05÷0,15 | 2,00 | 2,00 | 0,045 | ≤ 0,015 | 0,10 | 16,0÷19,0 | 6,0÷9,5 | $Mo = \le 0.80$ | | 303Plus | 303<br>S30300 | ≤ 0,10 | 1,00 | 2,00 | 0,045 | 0,15÷0,35 | 0,10 | 17,0÷19,0 | 8,0÷10,0 | Cu = ≤ 1,00 | | GVR | 303+Cu<br>S30331 | ≤ 0,08 | 1,00 | 2,00 | 0,045 | 0,15÷0,35 | 0,10 | 17,0÷19,0 | 8,0÷10,0 | $Mo = \le 0,60$<br>$Cu = 1,40 \div 1,80$ | | 304 | 304<br>S30400 | ≤ 0,07 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 17,5÷19,5 | 8,0÷10,5 | | | 304Plus | 304L<br>S30403 | ≤ 0,030 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 17,5÷19,5 | 8,0÷10,5 | - | | 321 | (321<br>S32100) | ≤ 0,08 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | - | 17,0÷19,0 | 9,0÷12,0 | Ti = 5xC÷0,70 | | 304ST | 304L<br>S30403 | ≤ 0,030 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 18,0÷20,0 | 10,0÷12,0 | - | | 304Cu | 302HQ<br>S30430 | ≤ 0,04 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 17,0÷19,0 | 8,5÷10,5 | Cu =3,00÷4,00 | | 316 | 316<br>S31600 | ≤ 0,07 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 16,5÷18,5 | 10,0÷13,0 | Mo =2,00÷2,50 | | 316Plus | 316L<br>S31603 | ≤ 0,030 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 16,5÷18,5 | 10,0÷13,0 | Mo = 2,00÷2,50 | | 316Ti | (316Ti<br>S31635) | ≤ 0,08 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | | 16,5÷18,5 | 10,5÷13,5 | Mo =2,00÷2,50<br>Ti = 5xC÷0,70 | | 1.4435 | 316L<br>S31603 | ≤ 0,03 | 1,00 | 2,00 | 0,045 | ≤ 0,030 | 0,10 | 17,0÷19,0 | 12,5÷15,0 | Mo = 2,50÷3,00 | | 316Cu | 316Cu | ≤ 0,04 | 1,00 | 2,00 | 0,045 | ≤ 0,015 | 0,10 | 16,5÷17,5 | 10,0÷11,0 | Mo =2,00 $\div$ 2,50<br>Cu = 3,00 $\div$ 3,50 | | 204Cu | | ≤ 0,15 | 1,00 | 6,5÷9,0 | 0,060 | ≤ 0,030 | 0,05÷0,25 | 15,5÷17,5 | 1,5÷3,5 | Cu = 2,00÷4,00 | # AUSTENITIC-FERRITIC STAINLESS STEELS (Duplex) Duplex Stainless Steels have the two-phase microstructure of Austenitic and Ferritic grades. Despite **lower Nickel** content they have excellent corrosion resistance, and can achieve high mechanical properties through cold drawing. These steels lend themselfs readily for marine and off-shore oil explo- ration. They are magnetic, can be welded but cannot be heat treated and quenched. Duplex steels are still undergoing research and development to fully explore new uses and applications. | R | AISI-UNS | C (max) | Si (max) | Mn (max) | P (max) | S (max) | Cr | Cu | Мо | N | Ni | |--------|------------------|---------|----------|----------|---------|---------|-----------|---------|---------|-----------|---------| | 2304 | (2304<br>S32304) | 0,03 | 1,00 | 2,00 | 0,035 | 0,015 | 22,0÷24,5 | 0,1÷0,6 | 0,1÷0,6 | 0,05÷0,20 | 3,5÷5,5 | | 1.4460 | (329<br>S32900) | 0,05 | 1,00 | 2,00 | 0,035 | 0,030 | 25,0÷28,0 | - | 1,3÷2,0 | 0,05÷0,20 | 4,5÷6,5 | | 2205 | 2205<br>S31803 | 0,03 | 1,00 | 2,00 | 0,035 | 0,015 | 21,0÷23,0 | | 2,5÷3,5 | 0,10÷0,22 | 4,5÷6,5 | #### HEAT-RESISTANT STAINLESS STEELS Heat-Resistant Stainless Steels have good strength and corrosion resistance at elevated temperatures. This is achieved with high levels of Chromium and Nickel content. These steels are used in mechanical applications such as heat treating **furnace components** and coils of resistors for heat treating elements. There characteristics ensure long service life at **elevated temperatures**, with excellent corrosion protection. | R | AISI-UNS | C (max) | Si (max) | Mn (max) | P (max) | S (max) | N (max) | Cr | Ni | Nb | |-------|------------------|---------|-----------|----------|---------|---------|---------|-----------|-----------|---------| | 310 | (310S<br>S31008) | 0,10 | 1,50 | 2,00 | 0,045 | 0,015 | 0,11 | 24,0÷26,0 | 19,0÷22,0 | - | | 314 | (314<br>S31400) | 0,20 | 1,50÷2,50 | 2,00 | 0,045 | 0,015 | 0,11 | 24,0÷26,0 | 19,0÷22,0 | - | | 330Nb | 330Nb | 0,15 | 1,00÷2,00 | 2,00 | 0,030 | 0,015 | 0,10 | 20,0÷23,0 | 33,0÷37,0 | 1,0÷1,5 | #### PRECIPITATION HARDENING STEELS These steels will achieve very high hardness through the addition of copper and an **age hardening** process defined by specific temperature and times the steel is exposed to these temperatures. Rodacciai's **precipitation hardening** steels are martensitic and depending on the age hardening time & temperature will achieve hardnesses higher than quenched & tempered steels. Parts are usually machined in the annealed condition and then agehardened to the desired properties. Applications include marine and medical use. | R | AISI-UNS | C (max) | Si (max) | Mn (max) | P (max) | S (max) | Cr | Ni | Mo (max) | Cu | Other elements | |---------|------------------|---------|----------|----------|---------|---------|-----------|---------|----------|---------|----------------| | 17-4 PH | 17-4PH<br>S17400 | 0,07 | 0,70 | 1,50 | 0,040 | 0,030 | 15,0÷17,0 | 3,0÷5,0 | 0,60 | 3,0÷5,0 | Nb=5xC÷0,45 | | 631M | 17-7PH<br>S17700 | 0,09 | 0,70 | 1,00 | 0,040 | 0,015 | 16,0÷18,0 | 6,5÷7,8 | - | - | Al=0,70÷1,50 | Rodacciai S.p.a. - Headquarters Bosisio Parini (LC) Via Giuseppe Roda 1, 23842 Tel. +3931878111 | Fax +3931878312 info.vendite@rodacciai.com ## Roda Specialty Steel, Inc. # Illinois Warehouse (USA Headquarters) 200 Lexington Dr. Buffalo Grove, IL 60089 USA Tel. 8472790228 | Fax 8472790229 ## **New Jersey Warehouse** 178 Ridge Road, Unit C Dayton, NJ 08810 USA Tel. 7323298400 | Fax 7323298401 #### **California Warehouse** 16380 Downey Ave. Paramount, CA 90723 USA Tel. 5626333262 | Fax 5626333267 sales@rodaspecialtysteel.com info@rodaspecialtysteel.com